SUBJECT INDEX

Acetylcholine, effects of, on axonal con-		normal and carotenoid-depleted Chro-	
duction of lobster nerve (DETTBARN,		matium (Bril)	50
Davies)	397	Calcium, effect of insulin on shorth-circuit	
Acetyl-transfer reactions. enzymic;		current in isolated frog skin in presence	
electronic aspects of, (Perault, Pull-		of, (Herrera, Whittenbury, Plan-	
MAN)	86	CHART)	170
Adenosine triphosphate, photosynthetic		Carcinogenesis, relationship between, and	
formation with chromatophores		excitation transfer (Pullman, Ber-	
of Rhodospirillum rubrum (Horto,		тнор)	277
Yamashita, Nishikawa)	37	Carotenoid, — depleted Chromatium;	
Albumin, bovine serum —; tensions at		energy transfer and photooxidative	
air-water surfaces and paraffin-water		bleaching of bacteriochlorophyll in re-	
interfaces in adsorbed films of, (Ghosh,		lation to structure in, (BRIL)	50
Bull)	150	Carotenoids, mutant photosynthetic spe-	
Amino acids, interactions between, and		cies lacking; photo-induced EPR	
ionized gels; specific effects in,		in, (Androes, Singleton, Biggins,	
(FEITELSON)	229	CALVIN)	180
Anesthetics, local ——: effects of electrical		k-Casein, action of rennin on; kinetic study	
and cholinesterase activity on active		of, (GARNIER)	366
structure of, (Rosenberg, Higman,		Cattle, rhodopsin, see Rhodopsin	
BARTELS)	406	Cell, different —— constituents; effect of	
Antimycin, effect of, on electron-transfer		radiation on incorporation of radio-	
systems in photosynthetic bacteria		activity in, (Bhattacharjee, Sarkar,	
(NISHIMURA)	17	Das Gupta)	123
Ascites tumour, exygen pressure in, in		Cells, collision between, and virus parti-	
mice; polarographic determination of,		cles; uncertainties in determination of	
(FRIMMER, ZUBRZYCKI)	440	efficiency of, (OGSTON)	279
Autoradiography, improved resolution in,		Chlorella, illuminated; effect of photo-	
with radioiodine using extranuclear		synthesis inhibitors on oxygen ev	
electron radiation from 125 [APPEL-		lution and fluorescence of, (Zweig.	
gran, Söremark, Ullberg)	144	Tamás, Greenberg)	190
Bacteria, photosynthetic; effect of		Chloride, retention of, by mitochondria	
heptylhydroxyquinoline-N-oxide and		(Gamble Jr.)	158
antimycin on electron-transfer systems		Chlorophyll, long-wavelength fluo-	
in, (Nishimura)	: 7	rescence; lifetime of, (BUTLER, NORRIS)	72
Bacteria, photosynthetic ——; effect of		Chlorophyll, mutant photosynthetic spe-	
phenylmercuric acetate on electron-		cies lacking —; photo-induced EPR	
transfer systems in, (NISHIMURA,		in, (Androes, Singleton, Bicgins,	
CHANCE)	I	Calvin)	180
Bacteria, photosynthetic; light-in-		Chlorophyll a, far-red inhibition of ——	
duced absorption spectrum changes in,		fluorescence in tito; effect of light in-	
(Nishimura, Chance)	1	tensity on. Butler)	275
Bacteria, surfaces of; physical investi-		Chlorophyll . ight-induced single elec-	
gations of behaviour of, (GITTENS,		tron-transfer reactions between, and	
JAMES)	. 250	quinones in solution (Tollin, Green)	308
(Hill, James, Maxted).	264	Chloroplast, fragments of; low-tempera-	
Bacteriochlorophyll, energy transfer and		ture spectra of, (BUTLER, BAKER)	206
photooxidative bleaching of, in re-		Chloroplast, spinach preparations;	
lation to structure in normal and		aerobic and anaerobic photophospho-	
carotenoid-depleted Chromatium (BRIL)	50	rylation in, under controlled light con-	
1:2-Benzanthracene, ring currents in,		ditions (SCHWARTE).	292
(Manory)	108	Chloroplasts, aqueous extracts of, with	
3:4-Benspyrene, ring currents in (Mz-	_	absorbancy maximum at 740 mµ;	
MORY)	168	properties of, (AGHION).	212
Bleaching, photooxidative of bacterio-		Chloroplasts, illuminated; fluoro-	
chlorophyll in relation to structure in		metric measurement of photoreduction	

of flavin by, (Vennesland, Gattung,		ling, Pfefferkorn)	132
BIRKICHT)	285	Flavin, photoreduction of, by illuminated	
Chloroplasts, isolated ——; nitrate re-		chioroplasts; fluorometric measure-	
duction in light by, (DFL CAMPO,		ment of, (VENNESLAND, GATTUNG,	
Paneque, Ramirez, Losada)	450	Birkicht)	285
Chloroplasts, shrinkage of whole upon		Frog, isolated skin of; effect of insulin on	
illumination (Itoh, Izawa, Shibata).	319	short-circuit current across, in presence	
Cholinesterase, see Esterase		of Ca and Mg (HERRERA, WHITTEM-	
Chromatium, normal and carotenoid-de-		BURY, PLANCHART)	170
pleted —; energy transfer and photo-		Gels, ionized ——; specific effects in inter-	
oxidative bleaching of bacteriochloro-		action between, and amino acids	
phyll in relation to structure in, (BRIL)	50	(FEITELSON)	229
Chromatophores, of Rhodospirillum ru-		γ-Globulin, bovine —; physico-chemical	_
brum; photosynthetic ATP formation		studies on, (Chowdhury, Jameson).	218
and photo-reduction of DPN with		Haemin, and derivatives; effect of	
(Horio, Yamashita, Nishikawa)	37	on nuclear-magnetic relaxation 🤃	
Chromium, ——-insulin-mitochondrial in-		water protons (Scheler)	424
teraction; polarographic study of,		Haemoglobin, uptake of oxygen by, in ery-	_
(CHRISTIAN, KNOBLOCK, PURDY,		throcytes; metabolic aspects ci, (Sirs)	37×
MERTZ)	420	Heptylhydroxyquinoline-N-oxide, effect	
Coenzyme I, reduced; effect of, on		of, on electron-transfer systems in	
light-induced single electron-transfer		photosynthetic bacteria (NISHIMURA).	17
reactions between chlorophyll a and	_	Hill reaction, effect of ultraviolet light on,	_
quinones in solution (TOLLIN, GREEN)	308	(SHAVITT, AVRON)	187
Collagen, thermal transitions in (MASON,		Humic acid, structure of; EPR studies on,	
RIGBY)	448	(Tollin, Reid, Steelink)	444
Copper (II), EPR of, in spores (WINDLE,		Insulin, chromium	
SACKS)	173	interaction; polarographic study of,	
Dentine, microradiography of, using		(CHRISTIAN, KNOBLOCK, PURDY,	
characteristic X-rays (WYCKOFF,		MERTZ)	420
CROISSANT)	137	Insulin, effect of, on short-circuit across	
Diaphragm, rat —; effect of excitation		isolated frog skin in presence of Ca and	
on movement of Na+ and K+ across,		Mg Herrera, Whittenbury, Plan-	_
and its correlation with protein struc-		CHART)	169
ture (Ungar, Romano)	110	¹²⁵ lodine, extranuclear electron radiation	
1:2; 5:6-Dibenzanthracene, ring currents		from; improved resolution in auto-	
in, (Memory)	168	radiography with radioiodine using,	
Diphosphopyridine nucleocide, photo-		(Appelgren, Söremark, Ullberg)	144
reduction of, with chromatophores of		Lobster, nerve; see Nerve	
Rhodospirillum rubrum (Horio, YA-		Luminescence, photosynthetic; co-	
MASHITA, NISHIKAWA)	37	operation of two pigment systems and	
Egg, sand dollar —; interacting solute		respiration in, (GOEDHEER)	61
flows in permeability studies on,		Magnesium, effect of insulin on shorth-	
(LUDLUM)	386	circuit current in isolated frog skin in	
Enzymes, acetyl-transfer reactions by:		presence of, (HERRERA, WHITTEMBURY,	
electronic aspects of, (. ERAULT, PULL-		l'LANCHART)	170
MAN)	86	Manganese (II), EPR of, in spores	
Erythrocyte, —— cell; magnetic isotropy		(WINDLE, SACKS)	173
of, (Malone, Downing, Gill)	165	Melanines, biogenesis of, (PULLMAN)	164
Erythrocytes, oxygen uptake by haemo-		Membrane, series—— system; volume	
globin in; metabolic aspects of, (SIRS)		flow in, (OGILVIE, McIntosh, Curran)	441
Erythrocytes, uptake of phosphate ions		Meniscus, diseased human —— fibrez:	
by human: effect of concentration		small-angle X-ay diffraction of,	
of inorganic phosphate on kinetics of,		(BONART, GRIMM, HOSEMANN, HÖH-	
(VESTERGAARD-BOGIND)		LING, PFEFFERKORN)	132
Esterase, choline activity; effects of,		Methaemoglobin, absorbancy and mag-	
on active structure of local anesthetics		netic susceptibility of; effect of neutral	.0.
(ROSENBERG, HIGMAN, BARTELS).	-	salts on, (SCHELER, THIELE, SCHELER)	252
Excitation transfer, relationship between,		Metrnyoglobin, absorbancy and magnetic	
and carcinogenesis (Pullman, Ber-		susceptibility of; effect of neutral salts	
THOD)		on. (SCHELER, THIELE, SCHELER)	201
Fittes, diseased human meniscus:		Mice, crygen pressure in Lhrlich ascites	
small-angle X-ray diffraction of,		tumou: in; polarographic determi-	
(Bonart, Grimm, Hosemann, Höh-		nation of, (FRIMMER, ZUBRZYCKI)	440

Mitochondria, chromium-insulin- — inter-		Potassium, movement of, across rat dia-	
action; polarographic study of, (CHRIS-		phragm; effect of excitation on, and	
TIAN, KNOBLOCK, PURDY, MERTZ)	420	its correlation with protein structure	
Mitochondria, retention of sodium and			110
chloride by, (GAMBLE Ir.)	1 = 8	Protein, — structure; correlation of.	110
	130		
Mitochondria, suspensions of; polare-		with effect of excitation on movement	
graphic study of, (Christian, Knob-		of Na+ and K+ across rat diaphragm	
LOCK, PURDY)	415	(Ungar, Romano)	110
Monuron, photoinactivation of, by ribo-		Proteins, ultraviolet fluorescence of: influ-	
flavin 5-phosphate (Sweetser)	78	ence of pH and temperature on,	
Nerve, lobster —; effects of acetylcholine		(STEINER, EDELHOCH)	341
on axonal conduction of, (Dettbarn,		Quinones, light-induced single electron-	
Davies)	397	transfer reactions between chlorophyll	
Nitrate, reduction of, i ght by isolated		a and, in solution (TOLLIN, GREEN)	
chloroplasts (DEL CAMPO, PANEQUE,		Radioactivity, incorporation of, in differ-	,
RAMIREZ, LOSADA)	450	ent cell constituents; effect of radi-	
Ox, — - y-globulin, see y-Globulin	45"	ation on, (Bhattacharjee, Sarkar,	
Ox, serum albumin of; tensions at air-			
		DAS GUPTA)	123
water surfaces and paraffin-water inter-		Rat, — diaphragm: effect of excitation	
faces in adsorbed films of, (GHOSH,		on movement of Na ⁺ and K ⁺ across,	
	150	and its correlation with protein struc-	
Oxygen, —— evolution of illuminated		ture (Ungar, Romano)	110
chlorella; effect of photosynthesis inhi-		Rennin, action of, on k-casein; kinetic	
bitors on, (Zweig, Tamás, Greenberg)	196	study of, (GARNIER)	36 6
Oxygen, pressure of, in Ehrlich ascites		Respiration, cooperation of two pigment	
tumours in mice; polarographic de-		systems and, in photosynthetic lumi-	
termination of, (FRIMMER, ZUBRZYCKI)	440	nescence (GOEDHEER)	61
Oxygen, uptake of, by haemoglobin in ery-		Rhodopseudomonas spheroides, light-in-	
throcytes; metabolic aspects of, (SIRS)	378	duced phosphopyridine nucleotide re-	
Phenylmercuric acetate, effect of, on elec-		duction in; kinetics and quantum	
tron transfer systems in photosynthetic		requirements and action spectrum of,	
bacteria (NISHIMURA, CHANCE)	I	(Anesz)	22
Phosphate, inorganic-; effect of concen-		Rhodopsin, cattle -; ultraviolet-spectral	
tration of, on kinetics of uptake of		displacements of, (TAKAGI)	328
phosphate ions by human erythrocytes		Rhodospirillum rubrum, chromatophores	J-°
(Vestergaard-Bogins)	0.2	of; photosynthetic ATP formation and	
Phosphate ions, uptake of, by human	93	photo-reduction of DPN with, (Horio,	
			2.7
erythrocytes; effect of concentration of		YAMASHITA, NISHIKAWA)	37
inorganic phosphate on kinetics of,		Rhodospirillum rubrum, light-induced	
(VESTERGAARD-BOGIND)	93	phosphopyridine nucleotide reduction	
Phosphopyridine aucleotide, light-induced		in; kinetics and quantum requirements	
reduction of, in Rhodospirillum rubrum		and action spectrum of, (AMESZ)	22
and Rhodopseudomonus spheroides;		Riboflavin, effect of, on light-induced	
kinetics and quantum requirements		single electron-transfer reactions be-	
and action spectrum of, (Amesz)	22	tween chlorophyll a and quinones in	
Phosphorylation, aerobic and anaerobic		solution (TOLLIN, GREEN)	308
photo—— in spinach-chloroplasts		Riboflavin 5-phosphate, photoinactivation	
under controlled light conditions		of monuron b., (Sweetser)	78
(SCHWARTZ)	292	Sand dollar, egg; see Egg	
Phosphorylation, photo-; effect of		Serum albumin, see Albumin	
ultraviolet light on, (SHAVITT, AVRON)	187	Skin, isolated t .; effect of insulin	
Photophosphorylation, see Phosphoryl-		on shorth-circuit current across, in	
ation		present of Ca and Mg (HERRERA,	
Photosynthesis, effect of inhibitors of, on		WHITTEMBURY, PLANCHART)	170
oxygen evolution and fluorescence of		Salts, neutral -; effect of, on ab-	•
illuminated chlorella (ZWEIG, TAMÁS,		sorbancy and magnetic susceptibility	
GREENBERG)	196	of metmyoglobin and methaemoglobin	
Photosynthetic exciss, matant -	- ,-	(SCHELER, THIELE, SCHELER)	282
lacking carotenoids or chlorophyll;		Sodium, movement of, across rat dia-	
photo-induced EPR in, (ANDROES,		phragm; effect of excitation on, and	
SINGLETON, BEGGINS, CALVIN)	180	its correlation with protein structure	
Pigment, corporation of two ——systems	, 00	(Ungar, Romano)	110
and respiration in photosynthetic		Sedium, retention of, by mitochondria	
	٤.	(GAMBLE Ir.)	
luminescence (GORDWERR).	61	[UJAMPLE II.]	. 50

Spinach, ——-chloroplasts; see Chloro-		lutions (Cornog Jr., Adams)	35€
plasts		Urea, 3-(p-chlorophenyl)-1,1-dimethyl-,	
Speres. EPR of Mn(II) and Cu(II) in,		see Monuron	
(WINDLE, SACKS)	173	Virus, collision between particles of, and	
Streptococcus pyogenes, capsular material		cells; uncertainties in determination of	
of; electrophoretic mobility of, (HILL,		efficiency of, (Ogston)	279
JAMES, MAXTED)	264	Waier, protons; effect of haemin and	
Surface charge, relationship between, and		its derivatives on nuclear-magnetic	
zeta potential as indicated by micro-		relaxation of, (Scheler)	424
electrophoresis and surface-conduct-		Water, — protons: nuclear-magnetic	
ance measurements (GITTENS, JAMES)	250	relaxation of, in aqueous solutions of	
Thioctic acid, effect of, on light-induced		paramagnetic macromolecules (PFEI-	
single electron-transfer reactions be-		FER)	434
tween chlorophyll a and quinones in		Zeta potential, relationship between, and	
solution (TOLLIN, GREEN)	308	surface charge as indicated by micro-	
Tumour, ascites, see Ascites	-	electrophoresis and surface-conduct-	
Tyrosine, fluorescence of, in alkaline so-		ance measurements (GITTENS, JAMES)	250
•		(, 3,	,

ERRATA

BIOCHIMICA ET BIOPHYSICA ACTA, VOL. 66 (1963)

p. 42, line 10: change "Pl" into "Pi".

p. 105, line 3, last figure: change "120" into "80".